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SURFACE PFSXXURE AND TURBULENT AIRFLOW I N  

WSVERSE RECTANGULAR NOTCHES 

by Jay  Fox 

Lewis  Research Center 

SUMMARY 

Surface-pressure coef f ic ien ts  Cp and airf low measurements i n  t ransverse 
L 1 3 
H 4 4 

rectangular notches of length-to-height r a t i o  - from - t o  1- are presented. 

Free-stream speeds range from 160 t o  600 f e e t  per second. 
vious low-speed measurements of 
r e s u l t s  are a l so  obtained. Ranges of L/H a r e  postulated wherein similar 
values of Cp may be found f o r  similar L/H. F i r s t  e f f e c t s  of compressibil i ty 
a re  discernible  i n  the  r e s u l t s .  Notch flow dynamics a re  s tudied i n  selected 
notches i n  d i f f e ren t  ' L/H 
ments, mean-speed surveys, and dust pa t te rns .  

Agreement with pre- 
e x i s t s  i n  many instances,  but some unique Cp 

ranges by means of turbulence i n t e n s i t y  measure- 

INTRODUCTION 

Separated flow tha t  i s  induced by a t ransverse rectangular  cutout i n  the  
s ide of a body that  i s  i n  a f r e e  stream can be divided roughly i n t o  three  r e -  
gions if  t h e  length of t he  cutout i n  the  d i r ec t ion  p a r a l l e l  t o  t he  stream i s  
not too great  compared with i t s  height.  The free stream, t h e  f irst  region, i s  
distinguished by a low l e v e l  of viscous a c t i v i t y  (laminar or turbulent  shear, 
o r  turbulent  ve loc i ty  f luc tua t ions)  and a high ve loc i ty .  
second region, the  ve loc i t i e s  a re  l e s s  than those i n  t h e  f r e e  stream, but  t he  
viscous a c t i v i t y  can be subs tan t ia l .  Between these two regions the re  i s  a 
t h i r d  region, a free-shear  layer  of large ve loc i ty  gradients  and viscous ef- 
f e c t s .  

I n  t h e  cutout,  t he  

Flow dynamics i n  rectangular cutouts have been s tudied t o  some extent  by 
means of wind tunnel  experiments. Roshko (ref.  1) measured surface pressure i n  
rectangular notches (0.40 5 L/H 5 1.33) i n  a wind-tunnel w a l l  a t  low f r ee -  
stream speeds ( 7 5  t o  210 f t / s e c ) .  Several ve loc i ty  p ro f i l e s  near t he  surfaces  
of the  square notch seemed t o  indicate  t h a t  a large eddy w a s  r o t a t i n g  i n  the  
notch. Small corner vor t ices  were a l s o  postulated by Roshko-to complement t h e  
main vortex. Turbulent flow w a s  present i n  the  boundary layer  ahead of t h e  
notch and i n  t h e  notch. 
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(a) Present model. 

d (b) Seban-Fox model. 

Figure 1. - Profiles of wind tunnel models. 

Charwat (ref. 2)  studied 
t h e  flow i n  long rectangular 
notches (L/H > 4) i n  a wind- 
tunnel  wa l l .  I n  subsonic tur- 
bulent flow, t h e  pressure on 
t h e  back end of the  notch bot- 
tom increased with increasing 
notch length; whereas , t h e  
pressures on t h e  f r o n t  end were 
always near the  free-stream 
value ahead of the notch. 

Some surface pressure m e a -  
surements i n  two notches, 
L/H = 1.84 and 3.47, were pre- 
sented by Seban and Fox 
(ref. 3 ) .  The back s ides  of 
the  notches were formed by t h i n  
fences on the wind-tunnel model 
shown i n  f igure  1. Turbulent 

flow exis ted i n  the  notch adjacent t o  t h e  subsonic f r e e  stream. 

The present de ta i led  measurements of  surface pressure i n  notches cover a 

greater  range of geometries and free-stream speeds (160 t o  

600 f t / s e c )  than those considered by Roshko. 
measurements, mean-speed surveys, and dust pa t te rns  at 
per second a r e  reported.  

I n  addition, turbulence i n t e n s i t y  
Ur equal t o  160 f e e t  

SYMBOLS 

surface-pressure coef f ic ien t ,  ( p  - pr )/(pru:/2) 

to ta l -pressure coef f ic ien t ,  approximately 

cP 

CP, t  
2 cP + (um/ue ) 

H 

L 

P 

U 

Um 

U* 

U '  

X 

2 

notch height,  in .  

notch length, in .  

s t a t i c  pressure 

velocity,  f t / s e c  

la rges t  ve loc i ty  located near surface of notch 

turbulence i n t e n s i t y ,  root-mean-square average of ve loc i ty  f luctuat ions 

distance from f r o n t  s ide of notch, in .  



x reference length f o r  boundary layer  ahead of notch 

Y dis tance from bottom of notch, i n .  

Y1 suggested datum of Y i n  t h e  free-shear layer  

y dis tance normal t o  surface,  ahead of notch, in .  

6 boundary-layer thickness ,  i n .  

v kinematic v i s  c o s it y 

p densi ty  

surface shear s t r e s s  TW 

Subscripts : 

e edge of f r ee  stream 

i incompressible flow 

r measured quant i ty  a t  reference locat ion 0.25 in .  ahead of notch or theo- 
r e t i c a l  quant i ty  a t  downstream i n f i n i t y  ( f i g .  2 )  

PROCEDURE 

The model shown i n  f igu re  1 spanned the  6-inch width of a 6- by 9-inch 
wind tunnel.  The model center l ine  coincided with t h e  midheight of the tunnel 
so tha t  the  tunnel  flow was divided i n t o  two streams of equal height by the  
e l l i p t i c a l  nose. A 1.12-inch s t r a i g h t  sec t ion  preceded t h e  rectangular 
notches, which were 2.05 inches i n  height H and mult iples  of 0.505 inch i n  
length L. Small-diameter tubes (0.02-in. I.D.) w e r e  i n s t a l l e d  i n  t h e  
laminated-plastic s h e l l  of the  model on the  center l ine  between the  tunnel  s ide  
walls t o  form t h e  pressure taps .  

The s tagnat ion chamber pressure was near atmospheric pressure,  while t h e  

The probe of t h e  anemometer w a s  
stagnation temperature w a s  near 85O F. 
sure mean speeds and turbulence i n t e n s i t i e s .  
ca l ibra ted  i n  a f r e e  stream t h a t  was  d i rec ted  normal t o  t h e  hot wire and i t s  
supporting s t e m  (0.13-in. diam), the wire and supporting s t e m  being perpendicu- 
lar t o  each other.  Some addi t iona l  measurements of mean speeds were made with 
impact- and s ta t ic -pressure  tubes,  which were always p a r a l l e l  t o  t he  bottom of 
the  notch. 

A hot-wire anemometer was used t o  m e a -  
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FLOW PAST THE NOSE 

Cp = ( p  - pr)/(prU32) are defined i n  

t i o n s  at the reference locat ion,  
1/4 inch ahead of the notch. 
vers ib le ,  ad iaba t ic  exgansion of t he  
free stream from stagnation condi- 
t i o n s  w a s  assumed i n  the  ca lcu la t ion  
of pr and Ur. For t h e  experi- 
ments a t  Ur approximately equal t o  
160 f e e t  per  second, incompressible- 
flow r e l a t i o n s  were  used t o  conve- 
n i en t ly  provide accurate values 

Theoretical model 
////////////////// Surface-pressure coef f ic ien ts  

-4 r e l a t i o n  t o  the  free-stream condi- 
ezzzzzzur - 

A r e -  
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I 

'3 > 
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1 0  
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162 

u 

+ 
' -. 1 ci -- 

of u,. n 
0 

3 - -.2 
-6 -4 -2 0 2 Pressure measurements on t h e  

Distance along surface, in. nose surface are shown i n  f i g  
Figure 2. - Surface pressure on model nose. Curve labeled Theory i n  t h e  unusual form, ( 1 - Cp) 1F: :, 

i s  result from incompressible irrotational flow analysis applied to 
theoretical model shown at top. Position r is IKatlOn of mea- 
sured U,. 

which is equal in incompressible 
flow t o  the  free-stream veloc i ty  ra- 
t i o  (Ue - Ur)/Ur. Low-speed measure- 

ments agree with t h e  t h e o r e t i c a l  predict ion t h a t  was calculated by the  tech- 
nique out l ined i n  reference 4. The theory,  which treats incompressible i r r o t a -  
t i o n a l  Plow, was appl ied t o  t h e  channel i n  f igu re  2. The two sets of measure- 
ments located on t h e  boundary between the  curved and s t r a i g h t  sect ions were ob- 
ta ined  from pressure t a p s  on the  upper and lower surface of t h e  model; t h e  d i f -  
ference between sets ind ica tes  t he  s l i g h t  asymmetry of flow. 

The absc issa  extends i n  t h e  negative d i r ec t ion  along the  curved nose of 
t he  model toward the  leading edge and t h e  s tagnat ion point.  Near t h e  leading 
edge, Cp i s  r e l a t i v e l y  la rge ,  and it approaches the  theo re t i ca l  maximum value 
of un i ty  f o r  incompressible flow at  the  s tagnat ion point.  This corresponds t o  

an approach of (1 - CP)'I2 - 1 t o  -1. The region around the  leading edge con- 
t a i n s  streamlines i n  t h e  f r e e  stream t h a t  a r e  subs t an t i a l ly  curved. The f l u i d  
p a r t i c l e s  t h a t  flow along these  curved streamlines experience rap id  pressure 
changes t h a t  become compression-expansion processes i n  high-speed flow. A s  a 
r e s u l t ,  Cp 
ure 2 a t  -4.7 and -2.6 inches as a decrease i n  a r e l a t i v e l y  low value of 
(1 - Cp)1/2 - 1, which corresponds t o  an increase i n  a high value of Cp. It 
i s  noteworthy t h a t  t h i s  high i s  associated with a la rge  curvature r e l a t i v e  
t o  t h e  surface i n  a spec i f ic  manner, t h a t  is ,  convex as viewed from t h e  surface, 
and t h a t  t h i s  high Cp increases  i n  high-speed flow. In  t h e  sec t ion  Free- 
Stream Effec ts ,  a similar behavior of Cp 
s i b i l i t y  i n  the  curved free stream by r e f e r r i n g  t o  t h i s  example on the  nose. 

departs  from i t s  low-speed value. This departure i s  shown i n  f i g -  

Cp 

i n  one notch i s  r e l a t e d  t o  compres- 

Further remarks concerning t h e  p o s s i b i l i t y  of compressibi l i ty  i n  a stream 
with a Mach number near 1 / 2  (Ur = 558 f t / s e c )  seem t o  be appropriate.  I n  t h e  
present context, t h e  term compressibi l i ty  implies t h a t  t he  pressure va r i a t ion  
i n  some l o c a l  region i s  l a rge  enough t o  cause a dens i ty  va r i a t ion  t h a t  alters 
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the  flow f i e l d  from i t s  incompressible-flow configuration and thus a l t e r s  . 
This seems feasible when Ur i s  equal t o  558 f e e t  per second, since pr i s  
then 1 2  percent below the  free-stream densi ty  a t  the stagnation point.  

cP 

The close agreement i n  f igure  2 between the theo re t i ca l  predict ion of 
(1 - C P ) l / '  - 1 and t h e  low-speed measurements can be used i n  a deduction of 
the  character of the f r e e  stream ahead of the notch. The theo re t i ca l  flow i s  
uniform a t  downstream i n f i n i t y ,  where the  ve loc i ty  i s  The theo re t i ca l  ve- 
l o c i t y  along t h e  model surface Ue approaches Ur qui te  rap id ly  after t h e  be- 
ginning of t he  s t r a igh t  section. A t  reference posi t ion r ,  where the ve loc i ty  
ahead of t he  notch i s  measured, the theo re t i ca l  var ies  only 1 percent from 
t he  terminal t heo re t i ca l  value This 
implies, i n  view of t he  close agreement between t h e  theo re t i ca l  and measured 
values, t ha t  t he  ac tua l  f ree  stream i s  nearly uniform across i t s  sect ion ahead 
of t he  notch. 

Ur. 

Ue 
U,, which corresponds t o  uniform flow. 

The experimental ve loc i ty  a t  the  edge of the f r e e  stream Ue adjacent t o  
the  notch w a s  measured during ve loc i ty  surveys i n  three  notches and found to be 
within 4 percent of UrJ as discussed i n  t h e  sect ion MEAN SPEED TRAVERSES. 

UPSTREAM BOUNDARY LAYER 

Ahead of the  notch, the laminar nature of t h e  boundmy layer  a t  Ur equal 
to 160 f e e t  per second w a s  ascer ta ined by turbulence in t ens i ty  measurements. 

1.0- 

Measured Calculated 
Ur e, in. 4 in. U,x 

- 
V 

0 Roshko 75 0.085 0.871 1.48X106 
A Present 161 .005 .039 .36X106 

1/7 POW' 

yle 

Figure 3. - Boundary-layer velocity ratio ahead of notch. 

The deviat ion between t h e  experimen- 
t a l  ve loc i ty  p ro f i l e  i n  f igure  3 and 
the  Blasius p ro f i l e  f o r  a constant 
value of Ue i s  undoubtedly a re -  
s u l t  of t h e  wide va r i a t ion  of 
on the  nose, which i s  shown i n  f i g -  
ure 2. 

Ue 

Roshko d id  not spec i f i ca l ly  
ident i fy  the  flow as being turbu- 
l e n t .  That turbulent  flow did e x i s t  
i n  the boundary layer  ahead of t he  
4-inch-long notch and, hence, a l s o  
i n  the  notch i t s e l f ,  however, i s  
evident from the  comparison between 
Roshko 's experimental ve loc i ty  pro- 
f i l e  and the  1/7-power l a w  p r o f i l e  
( f i g .  3) .  

Momentum thicknesses 0 f o r  
the two p ro f i l e s  i n  f igure  3 are in- 
tegrals of t h e  experimental values. 
Formulas ( r e f .  5 )  based on the 1/7- 
power l a w  p ro f i l e  o r  the Blasius 
p ro f i l e  w e r e  used to ca lcu la te  
boundary-layer thicknesses and 

5 



.,. . -- 

1.01 

Reynolds numbers (Urx/v) from t h e  respect ive momentum thicknesses.  

1.01 1.01 1 1.51 

TRANSITION 

0.10 

.53 

.44 

.22 

Reference 6 showed t h a t  t h e  t r a n s i t i o n  Reynolds number i n  notch f l o w  at  
supersonic Ue i s  somewhat below t h a t  f o r  t h e  separated flow induced by a 
backward fac ing  s tep.  Only s m a l l  e f f e c t s  w e r e  found t o  result from var ia t ions  
i n  uni t  Reynolds number on a given model, which implies t h a t  t h e  boundary layer  
ahead of the  notch can be ignored i n  a rough approximation. I n  view of t h i s ,  
t h e  e a r l i e r  r e s u l t s  of Chapman ( r e f .  7 )  on s t e p  models can be used t o  deduce an  
estimated t r a n s i t i o n  Reynolds number of 50,000 i n  notches a t  low Ue, where t h e  
length of t he  notch L i s  taken as the  c h m a c t e r i s t i c  length.  For t h e  lowest 
speed used herein (Ue = 160 f t / s e c ) ,  t h i s  estimated t r a n s i t i o n  Reynolds number 
implies a minimum notch length of 2/5 inch f o r  t r a n s i t i o n  t o  turbulence. A l l  
notches i n  t h i s  experiment exceed t h a t  length and thus  should engender turbu- 
l e n t  flow. 

0 . 0 0 4  

.019 

.049 

. 1 2 8  

TURBULENCE INTENSITY 

0 . 0 0 3  

.013 

.500 

1.400 

11.990 

The measurements of turbulence i n t e n s i t y  taken at Ur approximately equal 
t o  160 f e e t  per second a r e  shown i n  t a b l e  I as u'/Ur. The value of u'/Ur i n  

0 . 2 3  

.22 

. 4 3  

.29 

. 2 1  

TABU I. - TURBULENCE INTENSITY 

0.003 

. 0 2 0  

1.100 

'1.954 

I L/H 

0.23 

.19 

. 2 0  

.18 

1 0.08 I 0.50 
I I 

.034 .013 

.030 1.200 

.loo "2.000 

.012 

X/L 

0.93 I 0.50 

ul 
U r  

).029 

.054 

.059 

.031 

.076 

I 1  

ut 
Ur 

'.03 

.04 

.05 

.10 

%is location is in the middle of the free-shear layer and is the nominal location of the 
maximum ul/ur. 
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t he  f r e e  stream, 0.012, i s  about t he  same as t h a t  i n  t h e  laminar boundary layer  
ahead of the  notch. 
increase i n  u'/Ur above the  free-stream value e x i s t s  qui te  c lose t o  the  f ron t  
edge of t h e  notch. Transi t ion t o  turbulence must therefore  occur within a 
s m a l l  region adjacent t o  the f ron t  edge. Further evidence supporting t h i s  con- 
c lusion appears i n  the  mean ve loc i ty  p ro f i l e s ,  which a re  discussed i n  the  sec- 
t i o n  FREE-SHEAR LAYER. 

I n  t h e  free-shear layer  of the L/H = 1/2 notch, a marked 

Turbulence measurements by other  inves t iga tors  i n  separated flow are  r e -  
s t r i c t e d  t o  the  region behind a backward-facing s tep .  References 8 and 9 found 
i n t e n s i t i e s  i n  t h e  middle of t h e  free-shear layer  of t h e  same order of magni- 
tude as those i n  t a b l e  I, but t h e  values of reference 10 a r e  twice as great .  
On the  other hand, HSU'S values j u s t  behind the  s t ep  under t h e  free-shear layer  
a re  near t he  present values within the  notch. There may be some regu la r i ty  i n  
turbulence i n t e n s i t y  i n  d i f f e ren t  separated flow configurations,  but t he  evi-  
dence i s  not conclusive. 

The shor tes t  notch (L/H = 1/4) w a s  not surveyed successfully;  the surface 
measurements changed markedly when a probe w a s  inser ted .  A s  a result, the 
question of whether t h e  flow i s  laminar or turbulent  i n  t h i s  notch could not be 
answered by turbulence i n t e n s i t y  measurements. Surface hea t - t ransfer  measure- 
ments reported i n  reference 11 indica te  by t h e i r  va r i a t ion  with ve loc i ty  t h a t  
t he  flow i n  the  L/H = 1/4  notch i s  indeed turbulent .  

The r e s u l t s  of these low-speed surveys do not,  of course, e s t ab l i sh  the  
nature of t r a n s i t i o n  and turbulence at  high speed. It is  noteworthy, however, 
t h a t  no indicat ions of changes i n  t r a n s i t i o n  t o  turbulence with speed a r e  found 
i n  t h e  evidence provided by t h e  surface coef f ic ien t  Cp. 

SURFACE PFUZSm IN THE NOTCHES 

Surface-pressure coe f f i c i en t s  

Other flow parameters, such as t h e  boundary layer  ahead of t he  

Cp a r e  compared i n  t h i s  sec t ion  t o  the  r e -  
sults of other invest igat ions of notches that  a re  geometrically s imilar  (simi- 
lar L/H). 
notch and the  cross  sec t ion  of t h e  f r e e  stream were not similar i n  the  various 
experiments, but t he  extent  t o  which the  following comparison i s  successful  
ind ica tes  t he  r e l a t i v e  unimportance of these other parameters. 

For t h e  seven n8tches i n  figure 4, Cp i s  displayed along the  notch perim- 
e t e r  beginning with t h e  f ron t  edge on the  l e f t .  The f ron t  edge, t h e  two bottom 
corners, and the back edge are each marked by v e r t i c a l  l i n e s .  The increasing 
length of the notches (0.505-in. increments) i s  shown by t h e  increasing s i ze  of 
t he  bottom between t h e  s ides ,  which a re  f ixed  i n  height (2.05 i n . ) .  
r i g h t  of t he  l i n e  marking t h e  back edge of t he  notch are shown that were 
measured on the t r a i l i n g  surface of t he  model behind the  back edge of t h e  
notch. 

; 
To t h e  

C p l s  

I n  t h e  shor tes t  notch, the pressure i s  changed so  l i t t l e  from t h e  f ree-  
stream value that it suggests an analogy between t h i s  notch and a pressure tap .  
I n  f a c t ,  t he  "error" i n  the bottom of t h i s  notch i s  i n  t h e  sane d i r ec t ion  as 
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(d) Length-height ra t io  nominal, 1; actual, 0.99; Roshko, 1.00. 

Figure 4. - Surface-pressure coefficients displayed along notch perime- 
ter. 

t h a t  measured by reference 1 2  i n  
a l a rge  pressure t ap ,  that  i s ,  
i n  both instances t h e  pressure 
is  above t h e  t r u e  free-stream 
pressure,  which i s  sensed by a 
s m a l l  pressure t ap .  

A high Cp a t  t h e  t o p  of 
t h e  back s ide  appears f i rs t  i n  
t h e  L/H = l / 2  notch. This 
high Cp i s  associated with t h e  
impingement of some of t h e  f l u i d  
i n  t h e  free-shear layer  as it 
re tu rns  t o  t h e  notch. 

Exceptional pressures i n  
L/H = 1/2 notch were r e -  t h e  

corded a t  the  highest  speed; t he  

Cp i n  t h e  bottom rose about 0 . 1  
above t h e  lower speed values as 
d id  t h e  Cp a t  t h e  t o p  of t h e  
back s ide .  During t h e  recording 
of these pressures it w a s  noted 
t h a t  t h e  manometers declined 
during t h e  same i n t e rva l s  t h a t  a 
d i s t i n c t  sound emitted from t h e  
tunnel.  This suggested t h a t  a 
standing sound wave w a s  r a i s i n g  
the  pressure i n  t h e  bottom of 
t h e  notch. 

Sonic phenomena i n  rectan- 
gu.lar notches ( 0 . 1  i n .  high)  
were invest igated by r e f e r -  

ence 13, but surface pressures were not measured. Schlieren photographs showed 
sound waves emanating from the  back edge of t h e  notches, which w a s  one of t he  
regions i n  the  present experiment where a sonic e f f e c t  on 
Intense sound a t  d i s c r e t e  frequencies i n  notches up t o  1/2 inch long (L/H = 5 )  
a t  Mach numbers greater than 2/5 w a s  found a l so .  
present experiment w a s  1/2 when the  sonic phenomena w a s  observed. 
l i k e l y  t h a t  t h e  in t e rac t ion  of sound and pressure i s  similar i n  t h e  two experi- 
ments; however, no o ther  instances of sonic e f f e c t s  were observed i n  the  pres- 
en t  experiment. 

Cp w a s  observed. 

The Mach number of t h e  
It seems 

Regularity of Pressure Coefficient i n  Ranges of 

Length-Height R a t  i o  

The r e s u l t s  of Roshko agree with the  present values of Cp a t  most loca- 
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L 1 3  1 g = ?, a, 1, and 1- notches. 4 t i o n s  on t h e  

deviation between t h e  two r e s u l t s  on t h e  back s ide t h a t  i s  most evident i n  the 
L 1  - = 14 notch. H 

There is ,  however, a systematic 

1 
H 2  A iinique d i s t r i b u t i o n  of Cp appears i n  the L = 1- notch; it i s  d i f f e r -  

ent  from those i n  shorter  and longer notches and a l s o  d i f fe ren t  from Roshko's 
r e s u l t s .  Roshko noted intermit tencies  i n  C, i n  the  range 1.15 < L/H < 2.00. 

I 
I n  the  present experiment, no intermit tencies  appeared i n  t h i s  L/H range. 

There seem t o  be two ranges of L/H i n  which the notch flow i s  pr inc i -  
p a l l y  governed by L/H. Other parameters, such as the transverse extent of the  
f r e e  stream and t h e  boundary layer  ahead of the  notch, play a secondary r o l e  i n  

L 1  these flow regimes. Short notches (- 1- i n  the present experiment) engender H -  4 
one flow regime, as i s  evident by the  comparison between Roshko's r e s u l t s  and 
the  present Cp i n  f igure  4. Minor deviations between these r e s u l t s ,  such as 

"r I 

I ftlsec Back side 
I 

Front side Bottom 
I 

.2 155 

.1 
0 

-. 1 
-" 2 

( e )  Length-height ra t i o  nominal, 11: actual, 1.23; Roshko, 1.14. 
4 

"r I 

ftlsec 
b 160 
A 245 
0 314 
0 597 

6 
I 

( f l  Length-height ra t i o  nominal, 1L; actual, 1.48: Roshko, 1.33. 
2 

(g) Length-height ra t i o  nominal, 12; actual, 1.72; Seban-Fox, 1.84. 
4 

Figure 4. - Concluded. Surface-pressure coefficients displayed along notch 
perimeter. 

those on the  back s ides ,  
might be ascribed t o  the 
secondary parameters, 

Lang notches form the 
other proposed range i n  
which L/H determines the 
flow dynamics, as evidenced 
by the  favorable comparison 
between Seban-Fox and pres- 

L 3  ent  r e s u l t s  i n  the  - - - 1- H 4  
notch. The behavior of Cp 
i n  t h i s  second range of 
L/H i s  only t e n t a t i v e l y  
establ ished since there  
were only two locat ions of 
measurement i n  the Seban- 
Fox experiment. There is ,  
however, some addi t ional  
evidence tha t  tends to sup- 
port  the present hypothe- 
sis. Some unpublished re- 
sults from t h e  present 
model show t h a t  a regular  
var ia t ion  of Cp w i t h  L/H 
i s  found i n  notches with 
- > 1- I n  long notches, 
H = 4 . \  
Roshko and C h a r w a t  a l s o  
found r e g u l a  var ia t ions  of 
Cp w i t h  L/H. 
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Between these  two ranges, t he  notch flow dynamics seem t o  be dominated by 
the  secondary parameters. Only i n  t h i s  manner can t h e  widely varying r e s u l t s  
i n  d l f f e ren t  experiments be ra t iona l ized .  It a l s o  seems l i k e l y  t h a t  t he  geo- 
met r ica l  extent  of t h i s  intermediate ( t h i r d )  regime i s  af fec ted  by the  second- 
a r y  parameters; Roshko found o s c i l l a t i o n s  i n  notches i n  t h e  range 
1.15 < L/H < 2.00, whereas, i n  t h e  present experiment, unusual r e s u l t s  w e r e  

found only i n  t h e  L 1  = 12 notch. 

Free-Stream Ef fec t s  

1 I n  the  - = 1~ notch, t he  greatest deviat ion of t h e  Cp d i s t r ibu t ion  from 

t h e  t rends es tab l i shed  by shor te r  and longer notches occurs on the  f ron t  and 
back s ides .  These marked deviat ions can be used t o  deduce the  spec ia l  dynamics 
of t h e  f r e e  stream adjacent t o  t h i s  notch. The low Cp on the  f ron t  s ide  in -  
d ica tes  t h a t  t h e  streamlines of t he  f r e e  stream are concave as viewed from t h e  
notch, t h a t  i s ,  t h e  f r e e  stream i s  curving sharply toward t h e  notch bottom. 
Conversely, t he  high Cp 
f r e e  stream a re  convex t o  t h e  notch or t h a t  t h e  f r e e  stream i s  curving out of 
t h e  notch before t h e  back side.  Behind t h e  back edge, t he  low Cp indicates  
t h a t  a l o c a l  separat ion bubble e x i s t s  t he re ,  which causes the  concave stream- 
l i n e s  i n  the  f r e e  stream t o  curve toward t h e  surface before reattachment. 

H 

on the  back s ide  shows t h a t  t he  streamlines i n  t h e  

The r e l a t i o n s  between la rge  curvature i n  streamlines and the  pressure co- 
e f f i c i e n t s  t h a t  were used i n  t h e  foregoing discussion a r e  the  same as those 
found i n  po ten t i a l  theory.  To r e l y  e n t i r e l y  on theory t o  subs tan t ia te  t he  
foregoing deduction of t h e  free-stream dynamics from the  Cp on t h e  surface of 

t h e  - - - 1- notch i s  not necessary, however. Roos and Charwat ( r e f .  14) showed 

experimentally a similar curvature of t he  free stream i n  a rectangular notch i n  
the  w a l l  of a convergent nozzle. The associated C p ' s  i n  t he  notch were low 
i n  the  f ron t  end and remarkably high i n  t h e  back end, j u s t  as t h e  i n  t h e  

present - = 12 notch. 

1 
H 2  

C p ' s  
L 1  
H 

L 3  E = 1- notch the re  i s  a l s o  a s imi la r  4 Adjacent t o  t h e  back edge of t he  
curvature of t he  streamlines i n  t h e  f r e e  stream. I n  t h i s  notch, t h e  curvature 
can be ve r i f i ed  i n d i r e c t l y  by evidence f rom t h e  present experiment. A compari- 
son of Cp i n  t h e  square notch, which i s  i n  t h e  f irst  range, with Cp i n  t h e  

3 2 = 1- notch, which i s  i n  t h e  second range, i s  worth noting. On the  back s ide ,  H 4  
t he  Cp 

1- notch. This implies t h a t  pressure l e v e l  i s  subs t an t i a l ly  higher i n  t h e  - = 

t he  free-shear layer  (on t h e  border of t h e  free stream) dips  f a r t h e r  i n t o  the  
3 

H 4  
the  adjacent free stream. A separat ion bubble behind the  back edge i s  evi-  

L 3  denced by the  low Cp a t  t h a t  loca t ion  i n  t h e  E = 1~ notch but not i n  the  

d i s t r i b u t i o n  has t h e  same general  undulation i n  both notches, but t h e  
3 
4 H 

- =  1- notch and curves outward before the  back edge, as do the  streamlines i n  

10 



L/H = 1 notch. 
t i o n  FREE-SHEAR LAYER by ve loc i ty  surveys. 

This behavior of t h e  f ree-shew layer  i s  ve r i f i ed  i n  the  sec- 

There is, therefore ,  an increased curvature i n  the streamlines of the  f r e e  
3 stream before and after t h e  back edge of t he  An S-shape i n  the  

streamlines near t h e  back edge can be visual ized,  with curvature i n  one direc-  
t i o n  (out of t h e  notch'or convex as viewed from t h e  sur face)  before the  edge 
and i n  t h e  other d i r ec t ion  (toward t h e  t r a i l i n g  surface or concave as viewed 
from t h e  surface)  a f t e r  t h e  edge. 
streamlines near t he  s tagnat ion point  on the  nose of t h i s  model we described 

as curving i n  t h e  same direc-  
t i o n  as those before t h e  back 

as viewed f r o m t h e  surface.  A t  
t h e  former locat ion,  t h e  ef- 
f e c t s  of compressibi l i ty  w e r e  
evident as an increased value 
of (an already high) Cp 
high speeds. Since the  same 

= 1~ notch. 

I n  t h e  sec t ion  FLOW PAST "HE NOSE, t h e  

x XIL u, edge; t h a t  i s ,  both a r e  convex 
A 

A 

A 0'08 
A 

at 

.a  
M 

A 
A 

A 

A 

A 

A 
A 

A 

A 

A 

.50 .50 1% 

76 .75 155 

94 .93 154 

curvature of streamlines i s  
present at  t h e  two loca t ions ,  
t he re  can be l i t t l e  doubt t h a t  
t he  increased Cp at high 
speeds on the  back s ide  of t h e  
L 3  - = 1- notch i s  due t o  t h e  same H 4  
e f f e c t  as before, namely, com- 
p r e s s i b i l i t y  i n  t h e  free-stream 
flow. After t he  back edge, t h e  
decreased value of t h e  low 
at high speed i s  undoubtedly 
a l s o  due t o  compressibil i ty.  
I n  e f f e c t ,  t h i s  evidence of 
l o c a l  compressibil i ty i n  the  
f r e e  stream supports t h e  fore-  
going descr ip t ion  of t h e  curva- 
t u r e  i n  t h e  streamlines.  

Cp 

I" SPEED TRAmsEs 

The hot-wire anemometer 
probe t h a t  was used d id  not 
give results t h a t  were com- 
p l e t e l y  independent of t h e  d i -  
r ec t ion  of t he  ve loc i ty  vector.  

(a) Length-height ratio, 1/2. If the  s t e m  of t h e  hot- 
Figure 5. - Mean speed traverses in notches. Data marked m are taken wire probe were absent the 

as maximum velocity ratios near bottom of notch. or i en ta t ion  of t h e  w i r e  normal 

11 
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For the  deduction of surface 
shear T ~ ,  t he  ve loc i ty  p r o f i l e s  
were compared with the  K h & n  
p r o f i l e  from boundary layers ,  as 
shown i n  f igure  6. 
buffer  layer  p ro f i l e  (v" = -3.05 
+ 5 log P, 5 6 P 5 30) agrees 
with the  measurements located be- 
yond the  f irst  data  point (which 
i s  forced t o  match the  K h 6 n  
p r o f i l e )  i n  some instances,  nota- 
b l y  at  X/L = 0.32 i n  t h e  square 
notch. The Blasius p ro f i l e  was 
p lo t t ed  i n  v" - coordinates 
a f t e r  constructing a f r i c t i o n  co- 
e f f i c i e n t  ( T ~ / ~ ) ~ / ~ / U ~ ,  where 
( ~ ~ / p ) ' / ~  i s  the  deduced f r i c -  
t i o n  ve loc i ty  ( f r o m  the  p l o t )  and 

Um i s  t h e  measured maximum ve- 
l o c i t y  near t he  surface.  Neither 
p r o f i l e  compares as well  with t h e  
measured ve loc i t i e s  i n  the  

H 
square notch. This difference i n  
character  of the  measured veloc- 
i t y  p r o f i l e s  may be taken as 
another ind ica t ion  of t he  d i f f e r -  
ence i n  flow regimes i n  the  two 
notches. Shear results by Roshko 
and Seban and Fox compare reason- 
ab ly  well  with the  present r e -  
sults, as shown i n  f igure  6. 

The K&"n 

3 - -  - 1~ notch as with those i n  the  

0 
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I n  f igu re  7, t he  l i n e s  or  
contours of constant ve loc i ty  
drawn from the  t raverse  r e s u l t s  
( f i g s .  5(b) and ( e ) )  show t h e  
behavior of t he  free-shear layer  
t h a t  was  deduced from Cp d i s -  
t r i b u t i o n s  i n  t h e  sec t ion  Free- 
Stream Effec ts ,  namely, t he  f r ee -  

.a 1.0 

0 .5 1.0 1.5 20 
Y, in. 

(c) Length-height ratio, 12. 
4 

Figure 5. - Concluded. Mean speed traverses in notches. Data marked m are 
taken as maximum velocity ratios near bottom of notch. 

L 3  - = 14 notch than i n t o  the  square notch H shear layer  en ters  f a r t h e r  i n t o  t h e  

and turns  outward before t h e  back edge. 

The s t r a igh t - l i ne  contours t h a t  a r e  drawn between the  f i r s t  two t raverse  
locat ions form a v i r t u a l  o r ig in  f o r  t he  free-shear  layer  by t h e i r  in te rsec t ion  
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Figure 6. - Shear on notch bottom. Solid curve is  Kirma'n bound- 
ary layer profile. Dashed curve i s  Blasius laminar boundary 
layer profile plotted wi th shear listed and U, as free-stream ve- 
locity. 

near t h e  f r o n t  edge of t h e  notches. 
This s t r a igh t - l i ne  spreading i s  a 
well-known cha rac t e r i s t i c  of turbu- 
l e n t  f ree-shear  layers  (ref. 5) .  As  
such, it implies t h a t  t h e  t r a n s i t i o n  
t o  turbulence i n  the  present free- 
shear l aye r  occurs qui te  near t h e  
f r o n t  edge. because of t h e  loca t ion  
of t h e  v i r t u a l  o r ig in  ( f i g .  7 ) .  

A s i m i l a r i t y  between t h e  first 
two ve loc i ty  t raverses  on a Y/.X 
sca le  i s  a l s o  implied by t h i s  i n t e r -  
sec t ion  of the  s t r a i g h t  contours. 
These s t r a i g h t  contours can provide 
a t e s t  f o r  s imi l a r i t y  i n  the  back ve- 
l o c i t y  t r ave r ses  i f  they a re  extended 
t o  t h e  back t r ave r se  locat ions,  as 
shown i n  f igu re  7 by dashed l i n e s .  
I n  t h e  present view, the  back veloc- 
i t y  t r ave r ses  are similar t o  the  
f r o n t  t r ave r ses  if the  measured con- 
tou r s  a t  t h e  back t raverse  loca t ions  
can be sh i f t ed  along t h e  l i n e  of tra- 
verse ( X  = constant)  t o  coincide with 
t h e  respect ive dashed l i n e s .  For- 
mally, t h i s  i s  s i m i l a r i t y  on a 
[Y - Y~(x)]/x bas is .  This similar- 
i t y  can be t e s t e d  by a comparison of 
t h e  spacing between t h e  measured con- 
tou r s  with t h e  spacing between t h e  
respect ive dashed l i nes .  I n  the  

3 
H -  4 
ta ined  across  the  notch, but it i s  
not maintained i n  the  square notch. 
The i n i t i a l  spread of t h e  contours 
i n  t h e  square notch i s  greater than  
t h e  spread near t he  back t r ave r se  
loca t ions .  This difference.  between 

L 3 t h e  contours i n  t h e  - = 1 and 1- H 4 
notches i s  in te rpre ted  as another i n -  
d i ca t ion  of t he  d i f f e ren t  flow re- 
gimes i n  t h e  two notches. 

I- 1- notch, s i m i l a r i t y  i s  main- 

TOTAL-PRESSURE COEFFICIENT 

Along t h e  notch surfaces ,  t he  pressure-veloci ty  e f f e c t s ,  as distinguished 
from viscous e f f ec t s ,  are measured by the  to ta l -pressure  coef f ic ien t :  
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where Um i s  the  l o c a l  maximum veloc i ty  near the  surface.  That C p , t  is  the  
parameter i n  Bernoul l i ' s  equation, which remains constant along a streamline i n  
inv isc id  incompressible flow, should be noted. I n  viscous low-speed flow, 
can vary along a streamline as a r e s u l t  of t h e  viscous ac t ions  of momentum dr f -  
fusion ( shear )  and turbulent  d i s s ipa t ion  of mechanical energy; i n  f a c t ,  i t s  
va r i a t ion  can be used as a measure of viscous a c t i v i t y .  

Cp, t  

I n  t h e  present ca lcu la t ion  of Cp,t, t h e  streamlines are not e x p l i c i t l y  
es tabl ished.  Um, as shown i n  f igu res  5(b) and ( e ) ,  
a r e  assumed t o  be approximately on a streamline because of t h e i r  closeness t o  
another streamline,  t h e  surface.  The pressure at  t h e  loca t ion  of U, i s  as- 

Rather, t he  loca t ions  of 
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Figure 7. - Velocity ratio contours in free-shear layer. Dashed lines 
are extensions of straight contours through vir tual  origin. 

sumed t o  be t h e  &he as the  
adjacent surf ace pre,ssure. 
The subs t i t u t ion  of %/Ue 
fo r  Um/Ur, which i s  neces- 
s i t a t e d  by the  method of 
data  reduction, probably 
introduces uncer ta in t ies  of 
t he  same order of magnitude 
( say  4 percent) as those in-  
cluded i n  the  foregoing as- 
sumptions. Although Cp,t, 
a s  calculated herein,  i s  not 
a prec ise  quantity,  it i s  
usefu l  as an indicator  of 
viscous a c t i v i t y .  

The values of Cp,t 
that  a r e  calculated f r o m  Cp 
( f i g .  4) and um/ue ( f i g s .  
5 (b )  and ( e ) )  a r e  displayed 

along the  perimeters of 

t h e  - - - 1 and 1~ notches H 
i n  figure 8. Both the 
s q w e - n o t c h  results of 
Roshko and the  present 
r e s u l t s  show a gradual de- 
c l ine  i n  t h e  d i rec t ion  of 
flow, f r o m t h e  back s ide 
t o  the  f ron t  s ide ,  which 
ind ica tes  a low l e v e l  of 
viscous a c t i v i t y .  

3 

I n  t h e  g L 3  = 1~ notch; 

a s teeper  gradient of 
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Figure 8. - Total-pressure coefficient along notch perimeter. 
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accompanies a much %,t 
larger  CpYt at  t h e  back 
s ide.  These fea tures  sug- 
gest  t h a t  a grea te r  amount 
of energy i s  extracted 
from the  f r e e  stream and 
diss ipated by the flow i n  
t h i s  notch than by the 
flow i n  t h e  square notch. 
The idea of d i f f e r e n t  flow 
regimes i n  the two notches 
i s  supported by the  d i s -  
s i m i l a r i t y  of the two ,dis-  
tr ibut  ions of Cp , i n  
f igure  8. 

FLOW I N  SQUARE NOTCH 

Roshko 's in te rpre ta -  
t i o n  of square-notch flow 
as being dominated by a 

large r o t a t i n g  eddy w a s  based on ve loc i ty  p r o f i l e s  of s m a l l  extent from the  
surfaces,  which were measured a t  the  midpoints of t h e  three  s ides  of a square 
notch. The present p r o f i l e  i n  the  center of the  square notch, which i s  shown 
i n  f igure  5 (b)  , agrees with Roshko 's p r o f i l e  i n  the region of common 
the bottom. I n  the  present r e s u l t ,  t h e  l i n e a r  t rend  of U/Uo found by Roshko 

Y/H, near 

i s  shown t o  extend t o  a very low value 

Figure 9. - Velocity rat io contours wi th in square notch. Lines of 
constant velocity rat io drawn through circled measurements. 

a t  the midheight; it z s  complemented by 
a l i n e a r  increase i n  U/Ue t h a t  ex- 
tends t o  the  edge of the  free-shear 
layer  .. 

Mean speed contours, which a r e  
shown i n  f igure 9 ,  were constructed t o  
examine Roshko's i n t e r p r e t a t i o n  of 
square-notch flow. The s m a l l  s i z e  of 
the  region t h a t  i s  bounded by the  c i r -  
cular  low-speed contours around the  
notch center ,  as well as t h e  near-zero 
speed a t  the center,  suggests t h a t  the 
c e n t r a l  f l u i d  does indeed r o t a t e .  The 
c i r c u l a r  high-speed contour near t h e  
bottom at  midlength does not suggest a 
separate r o t a t i o n  of f l u i d ;  ra ther ,  the 
flow along t h e  bottom from back t o  
f ront  i s  shown t o  accelerate  t o  a peak 
speed at midlength and then slow near 
the  f r o n t  s ide.  

It i s  in te res t ing  t h a t  evidence of 
a r o t a t i n g  eddy, such as v e l o c i t i e s  be- 
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ing the  same on r a d i i  from some center,  i s  found only on the  cen t r a l  t raverse .  
The pressure-tube measurements previously mentioned suggest t h a t  t he  flow con- 
t inues  along the bottom from back t o  f ron t  wherever 
0.15, t h a t  i s ,  everywhere except very close t o  the  corners. Fluid p a r t i c l e s  
i n  the flow along t h e  bottom, therefore ,  do not follow a nearly c i r cu la r  path 
i n  a ro t a t ion  about t he  notch center ,  as a s o l i d  body; instead, the  motion i n  
the  main vortex along t h e  bottom (and probably along the  s ides)  i s  p a r a l l e l  to 
t he  surface over much of i t s  length,  which implies t h a t  the  main vortex motion 
i s  more nearly square than c i r cu la r  along i t s  boundaries. 

Um/Ue i s  greater  than 

3 DUST DEPOSITS I N  NOTCH WITH LENGTH-KFIGHT RATIO OF 1~ 

L 3 - = 14 notch was long enough t o  H The running time during t raverses  i n  the  

c l ea r ly  mark three  d i s t i n c t  areas  with dust .  
heavy deposit  r e su l t ed  from the  impingement of that por t ion  of t he  free-shear 
layer  t h a t  returned t o  the  notch. A moderate deposit  i n  the  back corner, which 
extended 0.3 inch on t h e  bottom and 0.4 inch on the  back s ide,  revealed the  
presence of a vortex by the  abrupt thinning of the  dust deposit  at t he  edges. 
Last ly ,  a vortex was indicated i n  the  f ron t  corner by l i g h t  deposits on t h e  
f ron t  s ide and the  bottom, which extended 0.5 inch from t h e  corner. 

At t h e  top  of t he  back s ide,  a 

The three  d i s t i n c t  ou t l ines  were subs t an t i a l ly  two-dimensional on t h e  cen- 
t r a l  two-thirds width of t he  model, away from t he  s ide  w a l l s  of t he  tunnel.  
Two-dimensional flow was indicated thereby, a t  l e a s t  i n  t he  regions where t h e  
main notch flow had undergone the  sharp tu rns  t h a t  r a i sed  the  surface pressure 
as well  as produced dust  deposits.  The corner vor t ices  can be considered r e -  
gions of low-speed flow t h a t  bridge the  gap between the  separation and r e -  
attachment of the  main notch flow as it rounds the  t u r n  i n  the  corners. 

CONCLUDING REMAFKS 

3 L = 1 and 1- notches general ly  support the  con- H 4 The flow s tudies  i n  the  
L 1  L 3  
H 4 H -  4 cept of d i f fe ren t  flow regimes i n  notches i n  the  ranges - 5 1- and - 2 1-. 

Between these ranges, Cp i s  not uniquely specif ied by L/H alone. 

Roshko's evidence of a la rge  vortex i n  t h e  square notch is  reproduced and 
extended. The new evidence implies t h a t  t h e  la rge  vortex motion i s  nearly 
square along i t s  boundaries, t he  notch surfaces.  

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, J u l y  14, 1964 
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